675 research outputs found

    A trend-preserving bias correction – The ISI-MIP approach

    Get PDF
    Statistical bias correction is commonly applied within climate impact modelling to correct climate model data for systematic deviations of the simulated historical data from observations. Methods are based on transfer functions generated to map the distribution of the simulated historical data to that of the observations. Those are subsequently applied to correct the future projections. Here, we present the bias correction method that was developed within ISI-MIP, the first Inter-Sectoral Impact Model Intercomparison Project. ISI-MIP is designed to synthesise impact projections in the agriculture, water, biome, health, and infrastructure sectors at different levels of global warming. Bias-corrected climate data that are used as input for the impact simulations could be only provided over land areas. To ensure consistency with the global (land + ocean) temperature information the bias correction method has to preserve the warming signal. Here we present the applied method that preserves the absolute changes in monthly temperature, and relative changes in monthly values of precipitation and the other variables needed for ISI-MIP. The proposed methodology represents a modification of the transfer function approach applied in the Water Model Intercomparison Project (Water-MIP). Correction of the monthly mean is followed by correction of the daily variability about the monthly mean. Besides the general idea and technical details of the ISI-MIP method, we show and discuss the potential and limitations of the applied bias correction. In particular, while the trend and the long-term mean are well represented, limitations with regards to the adjustment of the variability persist which may affect, e.g. small scale features or extremes

    Mechanical Characterization of Liposomes and Extracellular Vesicles, a Protocol

    Get PDF
    Both natural as well as artificial vesicles are of tremendous interest in biology and nanomedicine. Small vesicles (<200 nm) perform essential functions in cell biology and artificial vesicles (liposomes) are used as drug delivery vehicles. Atomic Force Microscopy (AFM) is a powerful technique to study the structural properties of these vesicles. AFM is a well-established technique for imaging at nanometer resolution and for mechanical measurements under physiological conditions. Here, we describe the procedure of AFM imaging and force spectroscopy on small vesicles. We discuss how to image vesicles with minimal structural disturbance, and how to analyze the data for accurate size and shape measurements. In addition, we describe the procedure for performing nanoindentations on vesicles and the subsequent data analysis including mechanical models used for data interpretation

    Acidification increases microbial polysaccharide degradation in the ocean

    Get PDF
    © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 1615–1624, doi:10.5194/bg-7-1615-2010.With the accumulation of anthropogenic carbon dioxide (CO2), a proceeding decline in seawater pH has been induced that is referred to as ocean acidification. The ocean's capacity for CO2 storage is strongly affected by biological processes, whose feedback potential is difficult to evaluate. The main source of CO2 in the ocean is the decomposition and subsequent respiration of organic molecules by heterotrophic bacteria. However, very little is known about potential effects of ocean acidification on bacterial degradation activity. This study reveals that the degradation of polysaccharides, a major component of marine organic matter, by bacterial extracellular enzymes was significantly accelerated during experimental simulation of ocean acidification. Results were obtained from pH perturbation experiments, where rates of extracellular α- and β-glucosidase were measured and the loss of neutral and acidic sugars from phytoplankton-derived polysaccharides was determined. Our study suggests that a faster bacterial turnover of polysaccharides at lowered ocean pH has the potential to reduce carbon export and to enhance the respiratory CO2 production in the future ocean.This study was supported by the Helmholtz Association (HZ-NG-102) and the Belgian Science Policy (SD/CS/03)

    Effect of CO2 enrichment on bacterial metabolism in an Arctic fjord

    Get PDF
    he anthropogenic increase of carbon dioxide (CO2) alters the seawater carbonate chemistry, with a decline of pH and an increase in the partial pressure of CO2 (pCO2). Although bacteria play a major role in carbon cycling, little is known about the impact of rising pCO2 on bacterial carbon metabolism, especially for natural bacterial communities. In this study, we investigated the effect of rising pCO2 on bacterial production (BP), bacterial respiration (BR) and bacterial carbon metabolism during a mesocosm experiment performed in Kongsfjorden (Svalbard) in 2010. Nine mesocosms with pCO2 levels ranging from ca. 180 to 1400 μatm were deployed in the fjord and monitored for 30 days. Generally BP gradually decreased in all mesocosms in an initial phase, showed a large (3.6-fold average) but temporary increase on day 10, and increased slightly after inorganic nutrient addition. Over the wide range of pCO2 investigated, the patterns in BP and growth rate of bulk and free-living communities were generally similar over time. However, BP of the bulk community significantly decreased with increasing pCO2 after nutrient addition (day 14). In addition, increasing pCO2 enhanced the leucine to thymidine (Leu : TdR) ratio at the end of experiment, suggesting that pCO2 may alter the growth balance of bacteria. Stepwise multiple regression analysis suggests that multiple factors, including pCO2, explained the changes of BP, growth rate and Leu : TdR ratio at the end of the experiment. In contrast to BP, no clear trend and effect of changes of pCO2 was observed for BR, bacterial carbon demand and bacterial growth efficiency. Overall, the results suggest that changes in pCO2 potentially influence bacterial production, growth rate and growth balance rather than the conversion of dissolved organic matter into CO2

    Thermal Instability with Anisotropic Thermal Conduction and Adiabatic Cosmic Rays: Implications for Cold Filaments in Galaxy Clusters

    Full text link
    Observations of the cores of nearby galaxy clusters show Hα\alpha and molecular emission line filaments. We argue that these are the result of {\em local} thermal instability in a {\em globally} stable galaxy cluster core. We present local, high resolution, two-dimensional magnetohydrodynamic simulations of thermal instability for conditions appropriate to the intracluster medium (ICM); the simulations include thermal conduction along magnetic field lines and adiabatic cosmic rays. Thermal conduction suppresses thermal instability along magnetic field lines on scales smaller than the Field length (≳\gtrsim10 kpc for the hot, diffuse ICM). We show that the Field length in the cold medium must be resolved both along and perpendicular to the magnetic field in order to obtain numerically converged results. Because of negligible conduction perpendicular to the magnetic field, thermal instability leads to fine scale structure in the perpendicular direction. Filaments of cold gas along magnetic field lines are thus a natural consequence of thermal instability with anisotropic thermal conduction. Nonlinearly, filaments of cold (∼104\sim 10^4 K) gas should have lengths (along the magnetic field) comparable to the Field length in the cold medium ∼10−4\sim 10^{-4} pc! Observations show, however, that the atomic filaments in clusters are far more extended, ∼10\sim 10 kpc. Cosmic ray pressure support (or a small scale turbulent magnetic pressure) may resolve this discrepancy: even a small cosmic ray pressure in the diffuse ICM, ∼10−4\sim 10^{-4} of the thermal pressure, can be adiabatically compressed to provide significant pressure support in cold filaments. This is qualitatively consistent with the large population of cosmic rays invoked to explain the atomic and molecular line ratios observed in filaments.Comment: submitted to ApJ; 13 figs. 31 pages; abstract shortened; figures reduced in size; see http://astro.berkeley.edu/~psharma/TI-v6.pdf for a copy with high resolution figure

    Identification of a Fundamental Transition in a Turbulently-Supported Interstellar Medium

    Full text link
    The interstellar medium in star-forming galaxies is a multiphase gas in which turbulent support is at least as important as thermal pressure. Sustaining this configuration requires continuous radiative cooling, such that the overall average cooling rate matches the decay rate of turbulent energy into the medium. Here we carry out a set of numerical simulations of a stratified, turbulently stirred, radiatively cooled medium, which uncover a fundamental transition at a critical one-dimensional turbulent velocity of ~ 35 km/s. At turbulent velocities below ~35 km/s, corresponding to temperatures below 300,000 K, the medium is stable, as the time for gas to cool is roughly constant as a function of temperature. On the other hand, at turbulent velocities above the critical value, the gas is shocked into an unstable regime in which the cooling time increases strongly with temperature, meaning that a substantial fraction of the interstellar medium is unable to cool on a turbulent dissipation timescale. This naturally leads to runaway heating and ejection of gas from any stratified medium with a one-dimensional turbulent velocity above ~35 km/s, a result that has implications for galaxy evolution at all redshifts.Comment: 16 Pages, 11 figures, ApJ, in pres

    Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters

    Get PDF
    Increasing atmospheric CO2 is decreasing ocean pH most rapidly in colder regions such as the Arctic. As a component of the EPOCA pelagic mesocosm experiment off Spitzbergen in 2010, we examined the consequences of decreased pH and increased pCO2 on the concentrations of dimethylsulphide (DMS). DMS is an important reactant and contributor to aerosol formation and growth in the Arctic troposphere. In the nine mesocosms with initial pH 8.3 to 7.5, equivalent to pCO2 of 180 to 1420 μatm, highly significant but inverse responses to acidity (hydrogen ion concentration [H+]) occurred following nutrient addition. Compared to ambient [H+], average concentrations of DMS during the most representative phase of the 30 d experiment were reduced by approximately 60% at the highest [H+] and by 35% at [H+] equivalent to 750 μatm pCO2, as predicted for 2100. In contrast, concentrations of dimethylsulphoniopropionate (DMSP), the precursor of DMS, were elevated by approximately 50% at the highest [H+] and by 30% at [H+] corresponding to 750 μatm pCO2. Measurements of the specific rate of synthesis of DMSP by phytoplankton indicate increased production at high [H+], in parallel to rates of inorganic carbon fixation. The elevated DMSP production at high [H+] was largely a consequence of increased dinoflagellate biomass and in particular, the increased abundance of the species Heterocapsa rotundata. We discuss both phytoplankton and bacterial processes that may explain the reduced ratios of DMS:DMSPt at higher [H+]. The experimental design of eight treatment levels provides comparatively robust empirical relationships of DMS and DMSP concentration, DMSP production and dinoflagellate biomass versus [H+] in Arctic waters
    • …
    corecore